CHM1480: Statistical Mechanics

Contact info

Prof. Dvira Segal

Lash Miller 420D, dvira.segal@utoronto.ca; phone: 416 946 0559

Please use UofT emails; please write CHM1480 in the subject line

Classes: Thur. 4-6 pm LM123

Office Hours: Tue. 4-5 pm - or email me to set an alternative time.

LM420D or on Zoom (link will be provided on Quercus).

Learning Outcomes: Knowledge of the foundations of statistical mechanics and its application to gas phase and liquid phase; familiarity with computer molecular dynamics simulations; understanding the integration of statistical mechanics with classical thermodynamics and quantum mechanics; communication of scientific ideas and results; basic scientific programming

Marking Scheme

5 HW sets = 75% (penalty: 2 points/15 **per day** are taken for late submission. Please contact me ahead of time if you require accommodations)

10 mins. class presentation = 10%

Take-home test= 15%

Assignments

Submit on Quercus

Assignments will require you to perform simple simulations (recommended with MATLAB or Python).

Assistance-guidance with basic Matlab will be provided. UofT students can use Matlab Online or download and install MATLAB to their personally-owned machines **free of charge**. MATLAB (You do not need to install Matlab— Matlab Online is perfectly suitable)

Assignments	From	Due date	weight/100
set 1	Jan 12	Jan 26	15
set 2	Jan 26	Feb 9	15
set 3	Feb 9	March 02	15
set 4	March 02	March 16	15
set 5	March 16	April 06	15
class presentation (last 2 classes)	March 31	TBD	10
Take home test (2 hours)	Last week of semester or	exam period	15

These are tentative dates, to be modified according to teaching pace. Please follow announcements in class and on the portal.

Note: We will not have a class on April 06. Suggested makeup days are March 31, or April 3,4, 10.

Academic Integrity

Please click, read and act with honesty: Academic Integrity at U of T and Code of behaviour

of academic matters

Offenses include (but are not limited to): Using ideas of another person without Acknowledgement; Submitting your work in more than one course without the approval of the instructor; Obtaining or providing unauthorized assistance on any assignment. Misconduct will be reported to the Associate Chair, Undergraduate/Graduate Studies

Copyright

Link to copyright-considerations at UofT

Course videos and materials belong to your instructor, the University, and/or other sources depending on the specific facts of each situation and are protected by copyright. The unauthorised use of any form of device to audiotape, photograph, video-record or otherwise reproduce lectures, course notes or teaching materials provided by instructors is covered by the Canadian Copyright Act and is prohibited.

Suggested textbook

Tuckerman, Statistical Mechanics: Theory and Molecular Simulation, Oxford

Syllabus

The course will cover basic aspects of equilibrium and nonequilibrium statistical mechanics.

- 1. Introduction: classical mechanics; relation between statistical mechanics and thermodynamics; microscopic versus macroscopic quantities; average values in statistical mechanics (week 1-2)
- 2. Ensemble theory: time averages versus ensemble averages; microcanonical, canonical and grand canonical ensembles; fluctuations in different ensembles (week 3-5)
- 3. Applications to liquids and condensed phases: discussion of reduced distribution functions; radial distribution function; potential of mean force (week 6-7)
- 4. Quantum ensembles: Quantum ideal gases, Fermi-Dirac and Bose-Einstein statistics (week 8-9)
- 5. Nonequilibrium statistical mechanics: Brownian motion theory; Langevin and Fokker-Planck equations; correlation function expressions for transport properties; linear response theory. (week 10-11)
- 6. Numerical simulations: Molecular dynamics in various ensembles; Nose Hoover thermostat; Langevin thermostat; Monte Carlo (embedded)

Announcements

Home assignments, solutions, and other important announcements will be posted on Quercus. It is your responsibility to regularly check postings on Quercus.