WORKING WITH FORMALDEHYDE (F) & PARAFORMALDEHYDE (PF)

(CAS #: F: 50-00-0, PF: 30525-89-4)

NOTE: Refer to Appendix 1 for F & PF Worker Form - page 5
Refer to Appendix 2 for SDS (Safety Data Sheets) for F & PF - page 6.

Hazards:

- Carcinogen to humans – solutions can emit formaldehyde gas
- May cause an allergic skin reaction
- May cause respiratory irritation
- Flammable solid
- Suspected of causing cancer
- Harmful if inhaled
- Harmful if swallowed
- Causes skin irritation
- Causes serious eye damage

1. **Purpose:** to provide step by step guidance on how to work with F & PF.

2. **Scope:** applies to all students, staff, faculty, and employees working with F & PF.
 Individuals are responsible for knowing the details of this SOP as well as being familiar with the hazards posed by F & PF.

3. **Prerequisites:** Locate the spill kit closest to your lab, spill kits occupy communal spaces in hallways. WHIMIS, EHS101, LMSST (hands on chemistry onboarding training). You must be trained by an experienced person in your lab on the use of F & PF.
4. **Responsibilities:** It is the responsibility of all Faculty, staff and students to follow the procedures described in the SOP and sign acknowledge of this SOP (see appendix 1). Faculty members are required to provide all PPE, ensure compliance, and ensure safety training.

5. **Personal Protective Equipment (PPE):**

<table>
<thead>
<tr>
<th>![Protective Gear]</th>
<th>![Gloves]</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Chemical Lab Coat]</td>
<td>![Wrist Guards]</td>
</tr>
<tr>
<td>![Safety Glasses]</td>
<td>![Two Pairs of Nitrile Gloves]</td>
</tr>
</tbody>
</table>

6. **Handling/Storage Procedure:**

- All handling for usage and preparation of F & PF solutions must occur in a fume hood.

- If you are dissolving (F) or (PFA) in a vehicle where inhalation exposure to fumes and vapors may occur; then, you CANNOT work in a BSC and you MUST use a fume hood.

- Where possible an outsourced solution should be used in place of solid stocks. Whenever possible, resuspend the entire solid stock, avoiding weighting and reducing potential for airborne exposure.

- The containers of F & PF solutions must be properly labeled with the identity of the hazardous contents and the appropriate hazard warning (i.e., toxic, possible carcinogen). Follow WHMIS 2015 label requirements.

- Contaminated work clothing should not be allowed out of the workplace and it should be disposed of as solid chemical waste.

- Follow the online chemical spills SOP [HERE](#) for detailed instructions on how to handle a spill.

- Once work with F/PF is completed, wipe down area with a soap and water solution.
• Do not bleach PF.

• PF should not be disposed down the drain. It should be collected and disposed of as chemical waste.

• Keep containers closed as much as possible (particularly important when working fixing infected cells in the fume hood.

• Use in the smallest practical quantities for the experiment being performed.

• If you are weighing PF powder and the balance cannot be located in a fume hood or BSC, tare a container then add powder in the hood and cover before returning to the balance to weigh the powder.

• Work with concentrated (>4% F/PF) and with dilute solutions (<4% F) solutions only in a chemical fume hood.

• Handle PF powder (and, preferably, granules or flakes) only in a chemical fume hood.

• When fixing cells inside a biosafety cabinet, close the plates immediately after dispensing F or PF, wait 5 min and then transport the plates within a leak-proof secondary container to a fume hood to continue with your experiment.

• Transport F/PF solutions in secondary containment, preferably a polyethylene or other non-reactive acid/solvent bottle carrier.

• Keep container tightly closed and sealed until ready for use.

• Store in secondary containment with flammables, away from oxidizers, reducing agents, metals, and acids.

• Keep containers of PFA solid away from water. Storing on the floor id not allowed.

• Avoid ignition sources.

7. **Step-by-step procedure for Working with F & PF Powder:**

1. Whenever possible, resuspend “working inside a fume hood” the entire stock (without weighing) to a concentration appropriate to prepare aliquots that can be stored for future use. Dilute stocks as needed always working inside a fume hood. Alternatively, store dilutes solutions prepared to the final working concentration. For some uses, solutions can be stored at -20°C for long periods of time.
2. If you are dissolving in a volatile vehicle where inhalation exposure to fumes or vapors occurs you cannot work in a biosafety cabinet (BSC). You MUST use fume hood.

3. Before you start preparing your solution, make a list of all you need, include a Ziplock clear bag or similar. This will be used to wrap inside all materials to be disposed into the appropriate chemical waste container.

4. Put on lab coat, and double gloves (mandatory). Tape inner glove to the lab-coat cuffs creating a seal and preventing exposure to dermal powder.

5. Place absorbent material (e.g., blue diaper) on the surface of the Fume hood or BSC. This will allow to catch potential spills (even traces that cannot be seen).

6. Bring the scale into the fume hood or BSC and place it on the blue pad.

7. Bring all necessary materials you need to weight and prepare the solution (solvent, spatula, tubes, etc.). Bring your stock vial.

8. Weight your sample, close stocks and readily clean the scale. Place cleaning materials on the blue diaper. Remove outside glove (leaving it on the blue diaper).

9. Remove the previously cleaned scale.

10. Put on a new glove on top of the one you are wearing (so that you are once more double gloved).

11. Proceed preparing the solution.

12. Any item that comes in contact with the chemical will be disposed by placing it on the blue diaper.

13. Once finished preparing the solution, place it inside a sealed container for transportation.

14. Sharps should be immediately disposed inside a sharp container, not on the blue diaper.

15. Remove the outside gloves and leave it on the blue diaper.

16. Wrap the blue diaper containing all the disposable materials and place in the clear Ziplock bag.
17. Place the sealed clear bag containing the waste in the chemical waste container

18. Wipe down area with a soap and water solution.

19. Remove your outer gloves and dispose them in waste box

20. Thoroughly wash hands after handling.
Appendix 1:
Formaldehyde & Paraformaldehyde SOP-
Acknowledgment Form

This form is to be completed by the employee/student intending to work with F & PF.

I have read the "Working with F & PF Procedure". I understand the hazards of working with F & PF and how to minimize the risks by following the safe work procedures and wearing appropriate PPE at all times.

☐ YES ☐ NO

<table>
<thead>
<tr>
<th>PRINT NAME & LAST NAME</th>
<th>SIGNATURE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PARAFORMALDEHYDE

ChemWatch Review SDS

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>PARAFORMALDEHYDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Name</td>
<td>paraformaldehyde</td>
</tr>
<tr>
<td>Synonyms</td>
<td>(CH2O)n; polyoxymethylene; paraform; formagene; paraformaldehyde; Aldicid; metaformaldehyde; formaldehyde dry solid; polymerised formaldehyde</td>
</tr>
<tr>
<td>Proper shipping name</td>
<td>PARAFORMALDEHYDE</td>
</tr>
<tr>
<td>Chemical formula</td>
<td>(CH2O)x</td>
</tr>
<tr>
<td>CAS number</td>
<td>30525-89-4</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses: Used in fungicides, bactericides and disinfectants. High volume use chemical; for the manufacture of synthetic resins, adhesives and plastics. Active ingredient of contraceptive creams.

Details of the supplier of the safety data sheet

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>Sigma-Aldrich (Merck)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>1 Science Park Road, #02-14 The Capricorn, Singapore Science Park Road II Singapore 117528 Singapore</td>
</tr>
<tr>
<td>Telephone</td>
<td>+65 6779 1200</td>
</tr>
<tr>
<td>Fax</td>
<td>+65 6779 1822</td>
</tr>
<tr>
<td>Website</td>
<td>Not Available</td>
</tr>
<tr>
<td>Email</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Emergency telephone number

<table>
<thead>
<tr>
<th>Association / Organisation</th>
<th>Sigma-Aldrich (Merck)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency telephone numbers</td>
<td>1800 262 8200</td>
</tr>
<tr>
<td>Other emergency telephone numbers</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

<table>
<thead>
<tr>
<th>Poisons Schedule</th>
<th>S6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>Skin Sensitizer Category 1, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Flammable Solid Category 2, Carcinogenicity Category 2, Acute Toxicity (Inhalation) Category 4, Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Serious Eye Damage Category 1</td>
</tr>
</tbody>
</table>

Hazard pictogram(s)

SIGNAL WORD

DANGER

Hazard statement(s)

- H317 May cause an allergic skin reaction.
- H335 May cause respiratory irritation.
- H228 Flammable solid.
- H351 Suspected of causing cancer.
- H332 Harmful if inhaled.
- H302 Harmful if swallowed.
- H315 Causes skin irritation.
- H318 Causes serious eye damage.

Precautionary statement(s) Prevention

- P201 Obtain special instructions before use.
- P210 Keep away from heat/sparks/open flames/hot surfaces. - No smoking.
- P271 Use in a well-ventilated area.
- P280 Wear protective gloves/protective clothing/eye protection/face protection.
- P281 Use personal protective equipment as required.
- P240 Ground/bond container and receiving equipment.
- P241 Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
- P261 Avoid breathing dust/fumes.
- P270 Do not eat, drink or smoke when using this product.
- P272 Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

- P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
- P308+P313 IF exposed or concerned: Get medical advice/attention.
- P310 Immediately call a POISON CENTER or doctor/physician.
- P321 Specific treatment (see advice on this label).
- P362 Take off contaminated clothing and wash before reuse.
- P370+P378 In case of fire: Use water jets for extinction.
- P302+P352 IF ON SKIN: Wash with plenty of soap and water.
- P333+P313 If skin irritation or rash occurs: Get medical advice/attention.
- P301+P312 IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.
- P304+P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
- P330 Rinse mouth.

Precautionary statement(s) Storage

- P405 Store locked up.
- P403+P233 Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

- P501 Dispose of contents/container in accordance with local regulations.
SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact
- If this product comes in contact with the eyes:
 - Immediately hold eyelids apart and flush the eye continuously with running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
 - Transport to hospital or doctor without delay.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact
- If skin contact occurs:
 - Immediately remove all contaminated clothing, including footwear.
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

Inhalation
- If fumes or combustion products are inhaled remove from contaminated area.
 - Lay patient down. Keep warm and rested.
 - Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
 - Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
 - Transport to hospital, or doctor, without delay.

Ingestion
- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
 - For advice, contact a Poisons Information Centre or a doctor.
 - Urgent hospital treatment is likely to be needed.
 - In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient’s condition.
 - If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist.
 - If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS.

Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
 - INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
 - NOTE: Wear a protective glove when inducing vomiting by mechanical means.

Indication of any immediate medical attention and special treatment needed

For acute or short-term repeated exposures to formaldehyde:

INGESTION:
- Patients present early with severe corrosion of the gastro-intestinal tract and systemic effects.
- Inflammation and ulceration may progress to strictures.
- Severe acidosis results from rapid conversion of formaldehyde to formic acid. Coma, hypotension, renal failure and apnoea complicate ingestion.
- Decontaminate by dilution with milk or water containing ammonium acetate; vomiting should be induced. Follow with gastric lavage using a weak ammonia solution (converts formaldehyde to relatively inert pentamethylenetetramine)
- Gastric lavage is warranted only in first 15 minutes following ingestion.

SKIN:
- Formaldehyde can combine with epidermal protein to produce a hapten-protein couple capable of sensitising T-lymphocytes. Subsequent exposures cause a type IV hypersensitivity reaction (i.e allergic contact dermatitis). [Ellenhorn & Barceloux: Medical Toxicology]
For SMALL FIRES:
Dry chemical, CO2, water spray or foam.

For LARGE FIRES:
Water-spray, fog or foam.

Special hazards arising from the substrate or mixture

| Fire Incompatibility | Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
| | Avoid reaction with strong alkalis, isocyanates, oxides, organic acids. |

Advice for firefighters

| Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard.
| | Wear breathing apparatus plus protective gloves.
| | Prevent, by any means available, spillage from entering drains or water course.
| | Fight fire from a safe distance, with adequate cover.
| | If safe, switch off electrical equipment until vapour fire hazard removed.
| | Use water delivered as a fine spray to control fire and cool adjacent area.
| | Avoid spraying water onto liquid pools.
| | DO NOT approach containers suspected to be hot.
| | Cool fire exposed containers with water spray from a protected location.
| | If safe to do so, remove containers from path of fire. |

| Fire/Explosion Hazard | Flammable solid which burns and propagates flame easily, even when partly wetted with water.
| | Any source of ignition, i.e. friction, heat, sparks or flame, may cause fire or explosion.
| | May burn fiercely.
| | May form explosive mixtures with air.
| | May REIGNITE after fire is extinguished.
| | Containers may explode on heating.
| | Solids may melt and flow when heated or involved in a fire.
| | Runoff may pollute waterways.
| | Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
| | Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport, thereby providing a source of ignition.
| | Decomposition products may be irritating, poisonous or corrosive.
| | Combustion products include: carbon monoxide (CO)
| | carbon dioxide (CO2)
| | formaldehyde
| | other pyrolysis products typical of burning organic material. |

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures
See section 8

Environmental precautions
See section 12

Methods and material for containment and cleaning up

| Minor Spills | Remove all ignition sources.
| | DO NOT touch or walk through spilled material.
| | Clean up all spills immediately.
| | Avoid contact with skin and eyes.
| | Prevent dust cloud.
| | With clean shovel (preferably non-sparking) place material into clean, dry container and cover loosely.
| | Move containers from spill area.
| | Control personal contact with the substance, by using protective equipment. |

| Major Spills | DO NOT touch the spill material
| | Clear area of personnel and move upwind.
| | Alert Fire Brigade and tell them location and nature of hazard.
| | DO NOT touch or walk through spilled material.
| | Control personal contact with the substance, by using protective equipment.
| | Prevent, by any means available, spillage from entering drains or water course.
| | No smoking, naked lights or ignition sources.
| | Increase ventilation. |
Stop leak if safe to do so.
含或盖上沙子、泥土或蛭石。
使用无火花铲和防爆设备。
收集可回收的产品并将其装入标有标签的容器中进行回收。
收集固态残渣并密封在标有标签的桶中进行处置。
用清水冲洗区域并围住以供以后处置；防止雨水流入下水道。
在清洁工作完成后，用去污剂和洗涤剂洗涤所有防护装备和设备，然后在重新使用之前存放和再利用。
如果排水系统或水道被污染，应通知紧急服务。
个人防护装备建议见本数据安全表第8节。

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of overexposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid smoking, naked lights or ignition sources.
- When handling, DO NOT eat, drink or smoke.
- Avoid contact with incompatible materials.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Working clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions).
- Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame.
- Establish good housekeeping practices.
- Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds.
- Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in. (0.8 mm) thick can be sufficient to warrant immediate cleaning of the area.
- Do not use air hoses for cleaning.
- Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used.
- Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition.
- Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance.
- Do not empty directly into flammable solvents or in the presence of flammable vapors.
- The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

Other information

- Rotate all stock to prevent ageing. Use on FIFO (First In-First Out) basis
- Store below 38 deg. C.
- FOR MINOR QUANTITIES:
 - Store in an indoor fireproof cabinet or in a room of noncombustible construction.
 - Provide adequate portable fire-extinguishers in or near the storage area.
- FOR PACKAGE STORAGE:
 - Store in original containers in approved flame-proof area.
 - No smoking, naked lights, heat or ignition sources.
 - DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
 - Keep containers securely sealed.
 - Store away from incompatible materials in a cool, dry, well ventilated area.
 - Protect containers against physical damage and check regularly for leaks.
 - Protect containers from exposure to weather and from direct sunlight unless: (a) the packages are of metal or plastic
construction; (b) the packages are securely closed are not opened for any purpose while in the area where they are stored and (c) adequate precautions are taken to ensure that rain water, which might become contaminated by the dangerous goods, is collected and disposed of safely.

- Ensure proper stock-control measures are maintained to prevent prolonged storage of dangerous goods.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

<table>
<thead>
<tr>
<th>Suitable container</th>
<th>Multi-ply paper bag with sealed plastic liner or heavy gauge plastic bag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE:</td>
<td>Bags should be stacked, blocked, interlocked, and limited in height so that they are stable and secure against sliding or collapse. Check that all containers are clearly labelled and free from leaks. Packing as recommended by manufacturer.</td>
</tr>
<tr>
<td></td>
<td>For low viscosity materials and solids:</td>
</tr>
<tr>
<td></td>
<td>Drums and jerricans must be of the non-removable head type.</td>
</tr>
<tr>
<td></td>
<td>Where a can is to be used as an inner package, the can must have a screwed enclosure.</td>
</tr>
<tr>
<td></td>
<td>For materials with a viscosity of at least 2680 cSt. (23 deg. C):</td>
</tr>
<tr>
<td></td>
<td>- Removable head packaging and</td>
</tr>
<tr>
<td></td>
<td>- cans with friction closures may be used.</td>
</tr>
<tr>
<td></td>
<td>Where combination packages are used, there must be sufficient inert absorbent material to absorb completely any leakage that may occur, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.</td>
</tr>
<tr>
<td></td>
<td>All combination packages for Packing group I and II must contain cushioning material.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Storage incompatibility</th>
<th>Paraformaldehyde:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- reacts violently with strong oxidisers, liquid oxygen</td>
</tr>
<tr>
<td></td>
<td>- produces formaldehyde in aqueous solution</td>
</tr>
<tr>
<td></td>
<td>- is incompatible with acids, alkalis, sunlight and UV light</td>
</tr>
<tr>
<td></td>
<td>- may generate electrostatic charges with flow or agitation</td>
</tr>
<tr>
<td></td>
<td>- is a polymer formed of formaldehyde having variable composition [(CH2O)n] (n=8-100)</td>
</tr>
<tr>
<td></td>
<td>Formaldehyde:</td>
</tr>
<tr>
<td></td>
<td>- is a strong reducing agent</td>
</tr>
<tr>
<td></td>
<td>- may polymerise in air unless properly inhibited (usually with methanol up to 15%) and stored at controlled temperatures</td>
</tr>
<tr>
<td></td>
<td>- will polymerize with active organic material such as phenol</td>
</tr>
<tr>
<td></td>
<td>- reacts violently with strong oxidisers, hydrogen peroxide, potassium permanganate, acrylonitrile, caustics (sodium hydroxide, yielding formic acid and flammable hydrogen), magnesium carbonate, nitromethane, nitro compounds (especially at elevated temperatures), peroxyformic acid</td>
</tr>
<tr>
<td></td>
<td>- is incompatible with strong acids (hydrochloric acid forms carcinogenic bis(chloromethyl)ether*), alcohols, ammonia, anilines, bisulphides, gelatin, iodide, magneisite, phenol, some monomers, sulfur, salts of copper, iron, silver.</td>
</tr>
<tr>
<td></td>
<td>- acid catalysis can produce impurities: methylal, methyl formate</td>
</tr>
<tr>
<td></td>
<td>Aqueous solutions of formaldehyde:</td>
</tr>
<tr>
<td></td>
<td>- slowly oxidise in air to produce formic acid</td>
</tr>
<tr>
<td></td>
<td>- attack carbon steel</td>
</tr>
<tr>
<td></td>
<td>Concentrated solutions containing formaldehyde are:</td>
</tr>
<tr>
<td></td>
<td>- unstable, both oxidising slowly to form formic acid and polymerising; in dilute aqueous solutions formaldehyde appears as monomeric hydrate (methylene glycol) - the more concentrated the solution the more polyoxymethylene glycol occurs as oligomers and polymers (methanol and amine-containing compounds inhibit polymer formation)</td>
</tr>
<tr>
<td></td>
<td>- readily subject to polymerisation, at room temperature, in the presence of air and moisture, to form paraformaldehyde (8-100 units of formaldehyde), a solid mixture of linear polyoxyethylene glycols containing 90-99% formaldehyde; a cyclic trimer, trioxane (CH2O3), may also form</td>
</tr>
<tr>
<td></td>
<td>Flammable and/or toxic gases are generated by the combination of aldehydes with azo, diazo compounds, dithiocarbamates, nitriles, and strong reducing agents</td>
</tr>
<tr>
<td></td>
<td>*The empirical equation may be used to determine the concentration of bis(chloromethyl)ether (BCME) formed by reaction with HCl:</td>
</tr>
<tr>
<td></td>
<td>log(BCME)ppb = -2.25 + 0.67• log(HCHO) ppm + 0.77• log(HCl)ppm</td>
</tr>
<tr>
<td></td>
<td>Assume values for formaldehyde, in air, of 1 ppm and for HCl of 5 ppm, resulting BCME concentration, in air, would be 0.02 ppb.</td>
</tr>
<tr>
<td></td>
<td>- Segregate from alcohol, water.</td>
</tr>
<tr>
<td></td>
<td>- Avoid reaction with oxidising agents</td>
</tr>
<tr>
<td></td>
<td>NOTE: May develop pressure in containers; open carefully. Vent periodically.</td>
</tr>
</tbody>
</table>

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
</table>

Continued...
EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>paraformaldehyde</td>
<td>Paraformaldehyde</td>
<td>2 mg/m3</td>
<td>23 mg/m3</td>
<td>47 mg/m3</td>
</tr>
<tr>
<td>formaldehyde</td>
<td>Formaldehyde</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

MATERIAL DATA

For formaldehyde:

Odour Threshold Value for formaldehyde: 0.98 ppm (recognition)

NOTE: Detector tubes for formaldehyde, measuring in excess of 0.2 ppm are available commercially.

Formaldehyde vapour exposure:

Primary irritation is dependent on duration of exposure and individual susceptibility.

The following are typical symptoms encountered at various exposure levels.

- 0.1 ppm - Lower level of mucous eye, nose and throat irritation
- 0.8 ppm - Typical threshold of perception
- 1-2 ppm - Typical threshold of irritation
- 2-3 ppm - Irritation of eyes, nose and throat
- 4-5 ppm - Increased irritation, tearing, headache, pungent odour
- 10-20 ppm - Profuse tearing, severe burning, coughing
- 50 ppm - Serious bronchial and alveolar damage
- 100 ppm - Formaldehyde induced chemical pneumonia and death

Despite the intent of the TLV Ceiling recommendation it is believed that 0.3 ppm will not protect that portion of the workforce (up to 20%) reported to be responsive to low ambient concentrations. Because of the dose-related carcinogenic activity for rat and mouse inhalation of formaldehyde, the report of macromolecular adducts in the upper and lower respiratory tracts of nonhuman primates following inhalation of formaldehyde, the human case reports of upper respiratory tract malignant melanoma associated with formaldehyde inhalation and the suggestive epidemiologic data on human cancer risk, the TLV Committee recommends that workplace formaldehyde air concentrations be reduced to the lowest possible levels that can be achieved using engineering controls.

Odour Safety Factor (OSF)

OSF = 0.36 (FORMALDEHYDE)

No exposure limits set by NOHSC or ACGIH

Exposure controls

Appropriate engineering controls

- For large scale or continuous use:
 - Spark-free, earthed ventilation system, venting directly to the outside and separate from usual ventilation systems
 - Provide dust collectors with explosion vents

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
 - Enclosure and/or isolation of emission source which keeps a selected hazard “physically” away from the worker and ventilation that strategically “adds” and “removes” air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
 - (a): particle dust respirators, if necessary, combined with an absorption cartridge;
 - (b): filter respirators with absorption cartridge or canister of the right type;
 - (c): fresh-air hoods or masks
- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying “escape” velocities which, in turn, determine the “capture velocities” of fresh circulating air required to efficiently remove the contaminant.

Type of Contaminant:

<table>
<thead>
<tr>
<th>Air Speed:</th>
<th></th>
</tr>
</thead>
</table>

Continued...
direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts,
gas discharge (active generation into zone of rapid air motion) 1-2.5 m/s (200-500 t/min.)

grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial
velocity into zone of very high rapid air motion). 2.5-10 m/s (500-2000 t/min.)

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favourable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only</td>
<td>2: Contaminants of high toxicity</td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td>3: High production, heavy use</td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td>4: Small hood-local control only</td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Eye and face protection

- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

Hands/feet protection

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough
Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers’ technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:
- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

>> Wear physical protective gloves, e.g. leather.
>> Wear safety footwear.

Body protection
- Overalls.
- Eyewash unit.
- Barrier cream.
- Skin cleansing cream.
- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Other protection

Recommended material(s)

<table>
<thead>
<tr>
<th>GLOVE SELECTION INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glove selection is based on a modified presentation of the:</td>
</tr>
<tr>
<td>"Forsberg Clothing Performance Index".</td>
</tr>
<tr>
<td>The effect(s) of the following substance(s) are taken into account in the computer-generated selection:</td>
</tr>
<tr>
<td>PARAFORMALDEHYDE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUTYL</td>
<td>A</td>
</tr>
<tr>
<td>NEOPRENE</td>
<td>A</td>
</tr>
<tr>
<td>NEOPRENE/NATURAL</td>
<td>A</td>
</tr>
<tr>
<td>NITRILE</td>
<td>A</td>
</tr>
<tr>
<td>PE</td>
<td>A</td>
</tr>
<tr>
<td>PE/EVAL/PE</td>
<td>A</td>
</tr>
<tr>
<td>PVC</td>
<td>A</td>
</tr>
<tr>
<td>TEFILON</td>
<td>A</td>
</tr>
<tr>
<td>VITON</td>
<td>A</td>
</tr>
<tr>
<td>NATURAL RUBBER</td>
<td>B</td>
</tr>
<tr>
<td>NATURAL+NEOPRENE</td>
<td>B</td>
</tr>
</tbody>
</table>

* CPI - Chemwatch Performance Index
 A: Best Selection
 B: Satisfactory; may degrade after 4 hours continuous immersion
 C: Poor to Dangerous Choice for other than short term immersion

Respiratory protection

Type BAX-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

<table>
<thead>
<tr>
<th>Required Minimum Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 10 x ES</td>
<td>BAX P1 Air-line*</td>
<td>-</td>
<td>BAX PAPR-P1</td>
</tr>
<tr>
<td>up to 50 x ES</td>
<td>Air-line**</td>
<td>BAX P2</td>
<td>BAX PAPR-P2</td>
</tr>
<tr>
<td>up to 100 x ES</td>
<td>-</td>
<td>BAX P3</td>
<td>-</td>
</tr>
<tr>
<td>100+ x ES</td>
<td>-</td>
<td>Air-line*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Air-line**</td>
<td>BAX PAPR-P3</td>
</tr>
</tbody>
</table>

* - Negative pressure demand
** - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)
Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.

The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).

Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.

Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.

Use approved positive flow mask if significant quantities of dust becomes airborne.

Try to avoid creating dust conditions.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>White crystalline flammable powder or flakes; slowly soluble in cold water. Has a strong pungent and irritating odour of formaldehyde. More readily soluble in hot water with evolution of formaldehyde. Insoluble in alcohol and ether. Soluble in alkali hydroxide solutions. Higher polymers are insoluble in water.</td>
</tr>
<tr>
<td>Physical state</td>
<td>Divided Solid</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>120-170 (decomp)</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>150 sublimes</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>71</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flammability</td>
<td>Combustible.</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>73.0</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>7.0</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>0.13 @ 30 C.</td>
</tr>
<tr>
<td>Solubility in water</td>
<td>Reacts</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>1.03</td>
</tr>
</tbody>
</table>

SECTION 10 STABILITY AND REACTIVITY

Reactivity

Presence of heat source and ignition source

Unstable in the presence of incompatible materials.

Product is considered stable.

Hazardous polymerisation will not occur.

Chemical stability

Presence of heat source and ignition source

Unstable in the presence of incompatible materials.

Product is considered stable.

Hazardous polymerisation will not occur.

Possibility of hazardous reactions

See section 7

Conditions to avoid

See section 7

Incompatible materials

See section 7
SECTION 11 TOXICOLOGICAL INFORMATION

Inhalation

Inhalation of dusts, generated by the material, during the course of normal handling, may be harmful. Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

Inhalation of vapour at relatively low concentrations may cause a tingling sensation in the nose and upper respiratory tract. Slightly higher concentrations may cause a burning sensation, headache. High vapour concentrations of formaldehyde are capable of causing chest constriction, bronchiopneumonia, dysphagia, oedema, spasms of the larynx and dyspnoea.

Excessive inhalation may cause inflammation of the nose and throat, mucous membranes loss of sense of smell, difficulty in breathing, coughing, weakness, headache and in extreme, chemical pneumonitis. The dust from the material is highly irritating even destructive to tissues of the mucous membranes and upper respiratory tract.

Ingestion

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

Ingestion of formaldehyde may cause immediate severe abdominal pain, with vomiting, nausea, diarrhoea, anuria, dizziness, followed by unconsciousness, convulsions and may result in death.

The methanol stabiliser in solutions is a cause of visual impairment and possible permanent blindness.

Skin Contact

The material produces severe skin irritation; evidence exists, or practical experience predicts, that the material either:

- produces severe inflammation of the skin in a substantial number of individuals following direct contact, and/or
- produces significant and severe inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongyl layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Eye

When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation.

Chronic

On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function (i.e. pneumoconiosis) caused by particles less than 0.5 micron penetrating and remaining in the lung. A prime symptom is breathlessness. Lung shadows show on X-ray.

When administered by inhalation, formaldehyde induced squamous cell carcinomas of the nasal cavity in rats of both
sexes. Although excess occurrence of a number of cancers has been reported in humans, the evidence for a possible involvement of formaldehyde is strongest for nasal and nasopharyngeal cancer. The occurrence of these cancers showed an exposure-response gradient in more than one study, but the numbers of exposed cases were often small and some studies did not show excesses in humans. Formaldehyde exposure has been associated with cancers of the lung, nasopharynx and oropharynx and nasal passages. Several investigations have concluded that specific respiratory sensitisation occurs based on positive bronchial provocation tests amongst formaldehyde-exposed workers. These studies have been criticised for methodological reasons. One large study however revealed that 5% of persons exposed to formaldehyde and had asthma-like symptoms met the study criteria for formaldehyde-induced asthma; this included a positive response on a bronchial provocation test with 2.5 mg/m³ formaldehyde. Although differential individual sensitivity has been established, the mechanism for this increased sensitivity is unknown. There is limited evidence that formaldehyde has any adverse effect on reproduction or development in humans. An investigation of reproductive function in female workers exposed to formaldehyde in the garment industry, revealed an increased incidence of menstrual disorders, inflammatory disease of the reproductive tract, sterility, anaemia, and low birth weights amongst offspring.

Sensitisation may result in allergic dermatitis responses including rash, itching, hives or swelling of extremities. Paraformaldehyde solid and solutions, when heated evolve formaldehyde gas.

Paraformaldehyde

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalation (rat) LC50: 1.07 mg/l/4h[^2]</td>
<td>Eye (rabbit): 100 mg SEVERE</td>
</tr>
<tr>
<td>Oral (rat) LD50: 592 mg/kg[^2]</td>
<td>Skin (rabbit): 500 mg/24h SEVERE</td>
</tr>
</tbody>
</table>

Formaldehyde

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermal (rabbit) LD50: 270 mg/kg[^2]</td>
<td>Eye (human): 4 ppm/5m</td>
</tr>
<tr>
<td>Inhalation (rat) LC50: 249.71475 mg/l/4H[^2]</td>
<td>Eye (rabbit): 0.75 mg/24H SEVERE</td>
</tr>
<tr>
<td>Oral (rat) LD50: 100 mg/kg[^2]</td>
<td>Eye: adverse effect observed (irritating)[^1]</td>
</tr>
<tr>
<td></td>
<td>Skin (human): 0.15 mg/3d-1 mild</td>
</tr>
<tr>
<td></td>
<td>Skin (rabbit): 2 mg/24H SEVERE</td>
</tr>
<tr>
<td></td>
<td>Skin: adverse effect observed (corrosive)[^1]</td>
</tr>
</tbody>
</table>

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer’s SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Formaldehyde

No significant acute toxicological data identified in literature search.

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

WARNING: This substance has been classified by the IARC as Group 1: CARCINOGENIC TO HUMANS.

Tenth Annual Report on Carcinogens: Substance anticipated to be Carcinogen [National Toxicology Program: U.S. Dep. of Health & Human Services 2002]

Paraformaldehyde & Formaldehyde

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke’s oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe
SECTION 12 ECOLOGICAL INFORMATION

Toxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>End Point</th>
<th>Test Duration (HR)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>paraformaldehyde</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>8.297mg/L</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td>430.284mg/L</td>
<td>3</td>
</tr>
<tr>
<td>formaldehyde</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>0.035mg/L</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>0.3mg/L</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td>0.788mg/L</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>NOEC</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td><0.1mg/L</td>
<td>4</td>
</tr>
</tbody>
</table>

Legend:
- Data either not available or does not fill the criteria for classification
- Data available to make classification

For formaldehyde:

Environmental fate:
Formaldehyde is ubiquitous in the environment as a contaminant of smoke and as photochemical smog.

In the atmosphere, formaldehyde both photolyses and reacts with reactive free radicals (primarily hydroxyl radicals); half-lives in the sunlit tropospheres are 1.25 to 6 hours for photolysis, and 7.13-71.3 hours for reaction with hydroxyl radicals. Reaction with nitrate radicals, insignificant during the day, may be an important removal process at night. Due to its solubility, formaldehyde will efficiently transfer to rain and surface water; one model predicts dry deposition and wet removal half-lives of 19 and 50 hours, respectively.

In water, formaldehyde will biodegrade to low concentrations within days; adsorption to sediment and volatilisation are not expected to be significant routes.

In soil, aqueous solutions of formaldehyde leach through the soil; at high concentrations adsorption to clay minerals may occur. Although biodegradable under both aerobic and anaerobic conditions the fate of formaldehyde in soil is unclear.

It does not bioconcentrate in the food chain.

Concentrated solutions containing formaldehyde are unstable, both oxidising slowly to form formic acid and polymerising. In the presence of air and moisture, polymerisation takes place readily in concentrated solutions at room temperature to form paraformaldehyde, a solid mixture of linear polyoxymethylene glycols containing 90-99% formaldehyde.

Drinking Water Standards:
- hydrocarbon total: 10 ug/l (UK max.)
- pesticide: 0.1 ug/l (UK max.)
- formaldehyde: 900 ug/l (WHO guideline)

Air Quality Standards:
- <0.1 mg/m³ as a 30 min. average, indoor air, non-industrial buildings

WHO guideline

DO NOT discharge into sewer or waterways.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>paraformaldehyde</td>
<td>LOW</td>
<td>LOW</td>
</tr>
<tr>
<td>formaldehyde</td>
<td>LOW (Half-life = 14 days)</td>
<td>LOW (Half-life = 2.97 days)</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>paraformaldehyde</td>
<td>LOW (LogKOW = 0.35)</td>
</tr>
</tbody>
</table>
SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- Containers may still present a chemical hazard/danger when empty.
- Return to supplier for reuse/recycling if possible.
- Otherwise:
 - If container cannot be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
 - Where possible retain label warnings and SDS and observe all notices pertaining to the product.
- Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.
- A Hierarchy of Controls seems to be common - the user should investigate:
 - Reduction
 - Reuse
 - Recycling
 - Disposal (if all else fails)
- This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted.
 - DO NOT allow wash water from cleaning or process equipment to enter drains.
 - It may be necessary to collect all wash water for treatment before disposal.
 - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
 - Where in doubt contact the responsible authority.
 - Cover residues with sodium metabisulfite.
 - Mix in a small amount of water.
 - Scoop up and wash to sewer with a large amount of water.
 - Recycle wherever possible.
 - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
 - Dispose of by: burial in a land-fill specifically licensed to accept chemical and/or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

<table>
<thead>
<tr>
<th>Marine Pollutant</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZCHEM</td>
<td>1Z</td>
</tr>
</tbody>
</table>

Land transport (ADG)

<table>
<thead>
<tr>
<th>UN number</th>
<th>2213</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN proper shipping name</td>
<td>PARAFORMALDEHYDE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transport hazard class(es)</th>
<th>Class</th>
<th>4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subrisk</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packing group</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental hazard</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>
Special precautions for user

Special provisions: 223
Limited quantity: 5 kg

Air transport (ICAO-IATA / DGR)

<table>
<thead>
<tr>
<th>UN number</th>
<th>2213</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN proper shipping name</td>
<td>Paraformaldehyde</td>
</tr>
<tr>
<td>Transport hazard class(es)</td>
<td></td>
</tr>
<tr>
<td>ICAO/IATA Class</td>
<td>4.1</td>
</tr>
<tr>
<td>ICAO / IATA Subrisk</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>ERG Code</td>
<td>3L</td>
</tr>
<tr>
<td>Packing group</td>
<td>III</td>
</tr>
<tr>
<td>Environmental hazard</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Special precautions for user</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cargo Only Packing Instructions</td>
<td>449</td>
</tr>
<tr>
<td>Cargo Only Maximum Qty / Pack</td>
<td>100 kg</td>
</tr>
<tr>
<td>Passenger and Cargo Packing Instructions</td>
<td>446</td>
</tr>
<tr>
<td>Passenger and Cargo Maximum Qty / Pack</td>
<td>25 kg</td>
</tr>
<tr>
<td>Passenger and Cargo Limited Quantity Packing Instructions</td>
<td>Y443</td>
</tr>
<tr>
<td>Passenger and Cargo Limited Maximum Qty / Pack</td>
<td>10 kg</td>
</tr>
</tbody>
</table>

Sea transport (IMDG-Code / GGVSee)

<table>
<thead>
<tr>
<th>UN number</th>
<th>2213</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN proper shipping name</td>
<td>PARAFORMALDEHYDE</td>
</tr>
<tr>
<td>Transport hazard class(es)</td>
<td></td>
</tr>
<tr>
<td>IMDG Class</td>
<td>4.1</td>
</tr>
<tr>
<td>IMDG Subrisk</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Packing group</td>
<td>III</td>
</tr>
<tr>
<td>Environmental hazard</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Special precautions for user</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EMS Number</td>
<td>F-A , S-G</td>
</tr>
<tr>
<td>Special provisions</td>
<td>223 967</td>
</tr>
<tr>
<td>Limited Quantities</td>
<td>5 kg</td>
</tr>
</tbody>
</table>

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

PARAFORMALDEHYDE(30525-89-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List
- Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes
- Australia Inventory of Chemical Substances (AICS)
- Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)
- Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Index
- Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 10 / Appendix C

FORMALDEHYDE(50-00-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 2
- Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6
- International Air Transport Association (IATA) Dangerous Goods Regulations
- International Maritime Dangerous Goods Requirements (IMDG Code)
- United Nations Recommendations on the Transport of Dangerous Goods Model Regulations
Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List
Australia Dangerous Goods Code (ADG Code) - Goods Too Dangerous To Be Transported
Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes
Australia Exposure Standards
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals
Australia Inventory of Chemical Substances (AICS)
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 3)
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 10 / Appendix C
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 2
GESAMP/EHS Composite List - GESAMP Hazard Profiles
IMO IBC Code Chapter 17: Summary of minimum requirements
IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk
IMO Provisional Categorization of Liquid Substances - List 3: (Trade-named) mixtures containing at least 99% by weight of components already assessed by IMO, presenting safety hazards
International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs
International Air Transport Association (IATA) Dangerous Goods Regulations
International Maritime Dangerous Goods Requirements (IMDG Code)
United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

National Inventory Status

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Yes</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Yes</td>
</tr>
<tr>
<td>Canada - NDSL</td>
<td>No (paraformaldehyde; formaldehyde)</td>
</tr>
<tr>
<td>China - IECSC</td>
<td>Yes</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>No (paraformaldehyde)</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>Yes</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>Yes</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Yes</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>Yes</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>Yes</td>
</tr>
<tr>
<td>Taiwan - TCSI</td>
<td>Yes</td>
</tr>
<tr>
<td>Mexico - INSQ</td>
<td>Yes</td>
</tr>
<tr>
<td>Vietnam - NCI</td>
<td>Yes</td>
</tr>
<tr>
<td>Russia - ARIPS</td>
<td>Yes</td>
</tr>
<tr>
<td>Thailand - TECI</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Legend:
Yes = All CAS declared ingredients are on the inventory
No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date: 06/27/2017
Initial Date: Not Available

SDS Version Summary

<table>
<thead>
<tr>
<th>Version</th>
<th>Issue Date</th>
<th>Sections Updated</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.1.1</td>
<td>03/12/2007</td>
<td>Acute Health (eye), Acute Health (inhaled), Acute Health (skin), Acute Health (swallowed), Chronic Health, Classification, Exposure Standard, First Aid (swallowed), Ingredients, Transport, Transport Information</td>
</tr>
<tr>
<td>6.1.1.1</td>
<td>06/27/2017</td>
<td>Classification</td>
</tr>
</tbody>
</table>

Other information

Continued...
Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations
PC – TWA: Permissible Concentration-Time Weighted Average
PC – STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.
TEL (+61 3) 9572 4700.